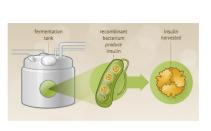
Module 4: Introduction to Cell Culture

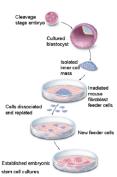
BMES Cell Team Fall 2020

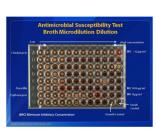
Outline

- Purpose of Cell Culture
- Sterilization Technique
- Passaging Procedure
 - Gauging confluency
 - Trypsinization
 - Centrifugation

Introduction to Cell Culture

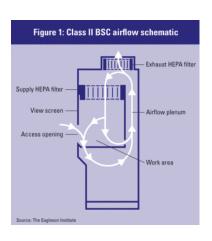

• **Definition:** Cell culture is the growth of microorganisms (bacteria, yeast) or cells (plant, animal, human) in a laboratory.


- Cells are handled inside of a Biological Safety Cabinet (BSC)
- Cells are stored inside of an incubator
 - The incubator mimics the cell's biological environment
 - Temperature = 37 °C
 - Concentration CO₂ = 5%
 - Humidity = 90%



Purpose of Cell Culture

- Research Study natural processes via in vitro experiments
- Therapeutics Produce drugs, tissue grafts, cell-based therapies
- Diagnosis Use patient sample to determine best treatment



Biological Safety Cabinet (BSC)

- Enclosed, ventilated laboratory
 workspace for safely working with
 materials potentially contaminated
 with pathogens
- Filtered air circulates through the BSC
 - Must avoid obstructing the vents or moving around quickly inside of the BSC to retain good airflow

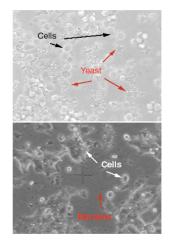
Sterilization Technique

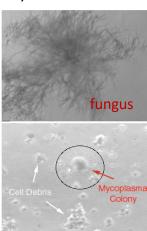
DO:

- Spray everything with ethanol before it enters the BSC or incubator
 - Includes your hands!
- · Cover every container right after you use it
- Use a new pipette tip for each new step
- · Leave lids facedown
- Keep shield low

Sterilization Technique

DON'T:

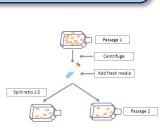

- Pass your hand over open containers
- Move around quickly in the BSC
 - Disrupts airflow inside the BSC
- Use a pipette tip if it has touched anything but the inside of the flask
- Directly pour media into the flask
- · Keep the shield high



Sterilization Technique

TAKEAWAYS

Cells are VERY easily contaminated Better safe than sorry



Cell Passaging

 Definition: Cell passaging removes cells from one container and seeds them in a new container

- Why would you passage?
 - Prevent overcrowding
 - Maintain ideal cell confluency
- · When should you stop passaging a cell line?
 - When you reach the maximum passage number of the cell type
 - Keep track of your passage number on the flask

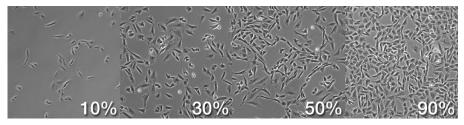
Cell Passaging Protocol

- 1. Use a microscope to gauge flask confluency
- 2. Remove old media
- 3. Wash cells with Phosphate Buffered Saline (PBS)
- 4. Add trypsin to detach cells from flask

5. Add media (DMEM) to deactivate trypsin

- Cellular
- 6. Remove cells from flask and transfer to a conical tube
- 7. Centrifuge conical tube to form cell pellet at bottom of tube
- 8. Aspirate supernatant from conical tube to remove liquid and debris
- 9. Resuspend cell pellet in fresh media
- 10. Plate cells into a new flask
- 11. Place flask back into the incubator

The Starting T-25 Flask


- Why the name?
 - Surface area of a T-25 flask is 25 cm²
- Why the color?
 - Cell culture media is Dulbecco's Modified Eagle Medium (DMEM)
 - 10% Fetal Bovine Serum (FBS) provides growth factors and proteins for cells
 - 1% Antibiotics helps protect against contamination
 - Phenol red provides a visual indication of pH

6.5 7.0 7.4 7.6 7.8

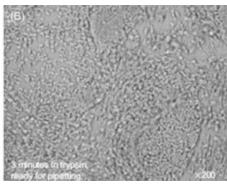
- Yellow = too acidic → needs to be passaged
- Purple = too basic → problem with incubator CO2

1. Gauging Confluency

- Cell confluency expresses the density of cultured cells
 - High confluency = too many cells = cell competition for resources → cell death
 - Low confluency = too few cells = cells are unable to signal with one another → cell death
- When a flask passes a certain level of confluency, you must passage the flask and reduce confluency

2 & 3: Prepare Cells for Removal

- Our cells adhere to the flask
- To prepare them for dissociation from the flask, we first remove the media
 - Media deactivates trypsin (the dissociation agent)
 - Fluids are removed from the flask via aspiration
- Then, we rinse with Phosphate Buffered Saline (PBS)
 - PBS is a saline solution designed for cell osmolarity and pH
 - removes any excess media and cell waste


4. Trypsinization

- We use trypsin to detach our cells from the T-25 flask
- Trypsin is a proteolytic enzyme that breaks down proteins involved in cell adhesion
- Add enough trypsin to cover the flask and leave for 5 minutes
 - Avoid leaving trypsin in for too long, as it can damage surface proteins or lyse cells
- After five minutes, place the flask under the microscope and tap
 - If trypsinization was successful, you should see bead-like cells move around

5. Trypsin Deactivation

- Add DMEM to deactivate trypsin
 - Calcium and magnesium ions in the Fetal Bovine Serum (FBS)
 will deactivate the trypsin present in the flask

6 & 7: Centrifugation

- After adding media, transfer the contents of the T-25 flask to a conical tube using a micropipette
- Next, centrifuge the conical tube
 - Make sure the centrifuge is balanced!
 - Centrifugation separates the cells from liquid and debris
 - Centrifuge spins quickly → separation of particles by density
 - Cells form a pellet at the bottom of the conical tube

https://www.quora.com/What-does-20-tonnes-of-cancer-cells-look-like

8 & 9: Prepare for Seeding

- After centrifugation, aspirate the supernatant
 - Supernatant: the liquid and cell debris at the top of the conical tube
 - Decreases debris reseeding
 - Leaves behind the cell pellet
- Add media to the conical tube and pipette up and down to mix and resuspend the cells in media
 - · Resuspend the cells in media as soon as possible
 - Without access to nutrients from media, the cells can die

10: Reseeding Cells

- Add the media necessary to attain your desired cell density
- Reseed cells in a new T-25 flask
 - Properly label your T-25 flasks!
 - passage number
 - cell type
 - your initials / your group's initials
 - date of cell passaging
 - any treatment applied to the cells

Split Ratio

Definition: The Split Ratio is the fraction of original cells that are reseeded in the new flask.

- Example: A 1:3 Split is when one third of the original cells
 - are reseeded in each plate
- Two factors that impact Split Ratio
 - Suggested seeding density
 - Want to ensure cells can communicate
 - Time until next passage
 - Seed at the a lower density if time to next passage is longer

Video: Cell Passaging in the BE Lab

https://drive.google.com/drive/u/0/folders/1fy CUsGUTKNscRyCzmMfNynDLq8dpZ7xY